Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.21.22276668

ABSTRACT

We screened 65 longitudinally-collected nasal swab samples from 31 children aged 0-16 years who were positive for SARS-CoV-2 omicron BA.1. By day 7 after onset of symptoms 48% of children remained positive by rapid antigen test. In a sample subset we found 100% correlation between antigen test results and virus culture.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.08.21264776

ABSTRACT

Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. Our outbreak response leveraged a molecular diagnostic screen of mosquito populations for DENV and WNV in Miami-Dade County to quickly employ targeted mosquito abatement efforts. We detected DENV serotypes 2 and 4 in mosquito pools, highlighting the silent circulation of diverse dengue serotypes in mosquitoes. Additionally, we found WNV-positive mosquito pools in areas with no historical reports of WNV transmission. These findings demonstrate the importance of proactive, strategic arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in competent mosquito vectors in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought. Article Summary LineEvidence of increasing dengue endemicity in Florida: Vector surveillance during dengue and West Nile virus outbreaks revealed widespread presence of other dengue virus serotypes in the absence of local index cases.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.11.451951

ABSTRACT

The global effort to combat COVID-19 rapidly produced a shortlist of approved drugs with antiviral activities for clinical repurposing. However, the jump to clinical testing was lethal in some cases as a full understanding of the mechanism of antiviral activity as opposed to pleiotropic activity/toxicity for these drugs was lacking. Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of infected Vero E6 cells, especially plasmalogens that correlated with increased levels of virus replication. Niclosamide (NIC), a poorly soluble anti-helminth drug identified for repurposed treatment of COVID-19, reduced the total lipid profile that would otherwise amplify during virus infection. NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which are required for virus pro-duction. Future screens of approved drugs may identify more druggable compounds than NIC that can safely but effectively counter SARS-CoV-2 subversion of lipid metabolism thereby reducing virus replication. However, these data support the consideration of niclosamide as a potential COVID-19 therapeutic given its modulation of lipophagy leading to the reduction of virus egress and the subsequent regulation of key lipid mediators of pathological inflammation.


Subject(s)
COVID-19 , Inflammation , Tumor Virus Infections , Drug-Related Side Effects and Adverse Reactions
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.19.21257237

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) has raised questions regarding the extent of protection of currently implemented vaccines. Ten "vaccination breakthrough" infections were identified in Alachua County, Florida, among individuals fully vaccinated with the BNT162b2 mRNA vaccine as a result of social or household transmission. Eight individuals presented mild symptoms in the absence of infection with other common respiratory viruses, confirmed using viral genetic sequencing. SARS-CoV-2 genomes were successfully generated for five of the vaccine breakthroughs and 399 individuals in the surrounding area and were included for reference-based phylogenetic investigation. These five individuals were characterized by infection with both VOCs and low-frequency variants present within the surrounding population. Mutations in the Spike protein were consistent with their respective circulating lineages, with the exception of a viable, low-frequency (approximately 1%) B.1.1.7 mutation, which we describe as a mutation of potential concern. The findings indicate that in cases of limited vaccine protection, infection is not restricted to VOCs or high-risk settings, highlighting the critical need for continued testing and monitoring of infection among individuals regardless of vaccination status.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.20.427541

ABSTRACT

Cell lines are the mainstay in understanding the biology of COVID-19 infection, but do not recapitulate many of the complexities of human infection. The use of human lung tissue is one solution for the study of such novel respiratory pathogens. We hypothesized that a cryopreserved bank of human lung tissue allows for the in vitro study of the inter-individual heterogeneity of host response to SARS-CoV-2 infection, thus providing a bridge between studies with cell lines and studies in animal models. We generated a cryobank of tissues from 16 donors, most of whom had risk factors for severe illness from COVID-19. Cryopreserved tissues preserved 90% of cell viability and contained heterogeneous populations of metabolically active epithelial, endothelial, and immune cell subsets of the human lung. Samples were readily infectible with HCoV-OC43 and SARS-CoV-2 coronavirus strains, and demonstrated comparable susceptibility to infection. In contrast, we observed a marked donor-dependent heterogeneity in the expression of IL-6, CXCL8 and IFN{beta} in response to SARS-CoV-2 infection. Treatment of tissues with dexamethasone and the experimental drug, N-hydroxycytidine, suppressed viral growth in all samples, whereas chloroquine and remdesivir had no detectable effect. Metformin and sirolimus, molecules with predicted antiviral activity, suppressed viral replication in tissues from a subset of donors. In summary, we developed a novel system for the in vitro study of human SARS-CoV-2 infection using primary human lung tissue from a library of donor tissues. This model may be useful for drug screening and for understanding basic mechanisms of COVID-19 pathogenesis.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.357731

ABSTRACT

Cytokine storm resulting from a heightened inflammatory response is a prominent feature of severe COVID-19 disease. This inflammatory response results from assembly/activation of a cell-intrinsic defense platform known as the inflammasome. We report that the SARS-CoV-2 viroporin encoded by ORF3a activates the NLRP3 inflammasome, the most promiscuous of known inflammasomes. ORF3a triggers IL-1 beta expression via NFkB, thus priming the inflammasome while also activating it via ASC-dependent and -independent modes. ORF3a-mediated inflammasome activation requires efflux of potassium ions and oligomerization between NEK7 and NLRP3. With the selective NLRP3 inhibitor MCC950 able to block ORF3a-mediated inflammasome activation and key ORF3a residues needed for virus release and inflammasome activation conserved in SARS-CoV-2 isolates across continents, ORF3a and NLRP3 present prime targets for intervention.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.03.20167395

ABSTRACT

BackgroundThere currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. MethodsAir samples were collected in the room of two COVID-19 patients, one of whom had an active respiratory infection with a nasopharyngeal (NP) swab positive for SARS-CoV-2 by RT-qPCR. By using VIVAS air samplers that operate on a gentle water-vapor condensation principle, material was collected from room air and subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and of virus isolated in cell culture from air sampling and from a NP swab from a newly admitted patient in the room were sequenced. FindingsViable virus was isolated from air samples collected 2 to 4.8m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the NP swab from the patient with an active infection. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. InterpretationPatients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus. FundingPartly funded by Grant No. 2030844 from the National Science Foundation and by award 1R43ES030649 from the National Institute of Environmental Health Sciences of the National Institutes of Health, and by funds made available by the University of Florida Emerging Pathogens Institute and the Office of the Dean, University of Florida College of Medicine. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSVarious studies report detection of SARS-CoV-2 in material collected by air samplers positioned in clinics and in some public spaces. For those studies, detection of SARS-CoV-2 has been by indirect means; instead of virus isolation, the presence of the virus in material collected by air samplers has been through RT-PCR detection of SARS-CoV-2 RNA. However, questions have been raised about the clinical significance of detection of SARS-CoV-2 RNA, particularly as airborne viruses are often inactivated by exposure to UV light, drying, and other environmental conditions, and inactivated SARS-CoV-2 cannot cause COVID-19. Added value of this studyOur virus isolation work provides direct evidence that SARS-CoV-2 in aerosols can be viable and thus pose a risk for transmission of the virus. Furthermore, we show a clear progression of virus-induced cytopathic effects in cell culture, and demonstrate that the recovered virus can be serially propagated. Moreover, we demonstrate an essential link: the viruses we isolated in material collected in four air sampling runs and the virus in a newly admitted symptomatic patient in the room were identical. These findings strengthen the notion that airborne transmission of viable SARS-CoV-2 is likely and plays a critical role in the spread of COVID-19. Implications of all the available evidenceScientific information on the mode of transmission should guide best practices Current best practices for limiting the spread of COVID-19. Transmission secondary to aerosols, without the need for an aerosol-generating procedure, especially in closed spaces and gatherings, has been epidemiologically linked to exposures and outbreaks. For aerosol-based transmission, measures such as physical distancing by 6 feet would not be helpful in an indoor setting and would provide a false-sense of security. With the current surges of cases, to help stem the COVID-19 pandemic, clear guidance on control measures against SARS-CoV-2 aerosols are needed.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL